The technology, called deterministic mechanoporation (DMP), consists of a microfluidic device that allows large numbers of living cells to be injected with genetic materials. Unlike the biochemical approaches that are typically used, the new approach is mechanical.
Using fluid flow, cells are dragged toward microscopic needles within the device. The cells are pierced and immediately pulled away by simply reversing the direction of the fluid they’re in. The resulting pore that is formed is large enough for genetic material present in the fluid to penetrate while leaving the cell healthy enough to continue its duties.
“This simple, but elegant nanomechanical poration approach provides significant advantages relative to existing gene delivery techniques,” said Masaru Rao, the lead researcher, in a press release. “For example, since viral vectors make up a large fraction of the overall manufacturing cost of current cell therapies, their elimination through the use of DMP holds potential for considerable cost reduction. In fact, in our paper we show that DMP can engineer primary human T cells, the same kind of cells used in CAR-T therapies, with efficiencies that exceed a state-of-the-art electroporation tool by more than four-fold,” Rao said.
The technology is being commercialized as SoloPore through a UC Riverside spinoff called Basilard BioTech.
Study in journal Nano Letters: Massively-Parallelized, Deterministic Mechanoporation for Intracellular Delivery
Via: University of California, Riverside
Leave a Reply