When her daughter, Sydney, was diagnosed with Type 1 diabetes at age 8, Kate Farnsworth stopped sleeping through the night. She’d set the alarm for 3 a.m. so she or her husband, Dave, could prick the girl’s fingers and check her blood sugar. If the results were worrisome, they’d adjust her insulin and keep checking every 15 minutes. At 6 a.m., another alarm went off to signal the next insulin dose, but by then, Kate had usually snapped awake again already. When Sydney got home from school each afternoon, Kate was there to check her glucose level. “Diabetes is one of the only diseases where you’re sent a prescription and have to adjust the dosage on your own” forever, Kate says. For Sydney, the biggest worry was “how I wouldn’t ever be normal again.”
Two exhausting years in, Kate found the beginnings of an alternative in an online forum. A loose confederation of do-it-yourselfers were working on a system that would eventually help link an insulin pump to a glucose monitor and connect both to a smartphone app. The idea was that the wearer—or her parents—could track and adjust her blood sugar, in person or from afar. That would mean fewer pinpricks, and far fewer alarms, because her blood sugar would stay out of the danger zone. Most of the time, the contraption would be able to regulate the wearer’s insulin itself.
Two long years after that, Kate, a graphic artist in the Toronto suburbs, was able to follow the community’s step-by-step instructions and build her daughter what amounted to an artificial pancreas, the organ that regulates blood sugar. Suddenly, the Farnsworths could take a breath. Sydney, now 15, is still using an updated version of that DIY system, which, because a fellow DIYer donated the pump, cost only $250 to make. “I’m really happy with where I am now,” she says. “It’s so simple to just click a button and give insulin while I’m on my phone.” The app she uses, connected to a sensor under her skin, keeps monitoring her whether she’s sleeping, taking a math quiz, or doing jumps on her snowboard. “It has totally changed the way we manage diabetes,” Kate Farnsworth says.
Twenty years ago, internet utopians envisioned scientific innovation gradually becoming more open-source. Instead, most amateur “biohacking” has remained fringe-y and often focused on aesthetics—inserting lights under the skin as a fashion statement, for example. But like the prosthetic arm a teenager built himself out of Legos, the device keeping Sydney alive is a rare example of the idea working out, at least in microcosm. By some estimates, as many as 2,000 people around the world have used a home-built pancreas, cobbled together mostly via social media and the free-code clearinghouse GitHub. Tech support consists of parents and patients who use Facebook Messenger or email to help newcomers fix bugs or revive busted equipment. There are plenty of potential converts: In the U.S. alone, about 1.3 million people have Type 1 diabetes, and there are indications the technology could also help some sufferers of Type 2, the group that accounts for most of the world’s 422 million diabetes cases.
Although no users have reported a disastrous malfunction, trusting your life (or your child’s) to a DIY pancreas carries obvious risks. The U.S. Food and Drug Administration is years away from approving a comparably flexible and automated rig for sale. “You’ve got a group that is circumventing all of the controls that are in place,” says Hooman Hakami, president of the diabetes group at Medtronic Plc, the leader in the $8.3 billion market for old-school diabetes devices. “I can show you what a few of our engineers have put together over a weekend, and it would blow you away. But we don’t call that a finished product. We call that a prototype.”
So far, though, the rough-and-tumble version is way ahead of the market. Apple Inc. and Eli Lilly & Co. have hired DIYers, and Medtronic’s latest FDA-approved product can now do most of the things the Farnsworths’ system can—for $7,000, before insurance. It’s not hard to understand why diabetics and their loved ones might opt for the Farnsworth model, says Courtney Lias, who oversees chemistry and toxicology devices at the FDA’s Center for Devices and Radiological Health. “You can do everything on your phone except manage diabetes,” Lias says. “You should be able to do that, too.”
The DIY pancreas movement would never have happened if not for a Medtronic blunder. In 2011 a pair of security researchers alerted the public that the wireless radio frequency links in some of the company’s best-selling insulin pumps had been left open to hackers. Medtronic closed the loophole after the researchers warned of risks to patients, but it never recalled the devices, leaving thousands in circulation.
By then, Ben West, a programmer and diabetes patient in San Francisco, had decided to hack the pump. “This is not what I wanted,” he says. “This is all a last-ditch effort.” He says he’d been careful to use his existing pump as directed but still wound up in the hospital more than once when his blood sugar veered dangerously high or low. He despised needing to retreat to the corner of a party to prick his finger and test his blood sugar, and he couldn’t stand how his pump itched and came unstuck during yoga.
Leave a Reply