Treating pain with magnetic fields

Home / Clinical Practice / Treating pain with magnetic fields
Scientists have designed a hydrogel loaded with magnetic particles and laboratory-grown neurons. By applying magnetic force, the researchers were able to reduce the pain signaling of the neurons.

In the United States, chronic pain is “the most common cause of long-term disability.”

hand holding magnet

When applied to neurons, a magnetic field can reduce the cells’ pain signals, suggests a new study.

According to the National Institutes of Health (NIH), over 76 million people in the U.S. — that is, approximately 1 in 4 people — have had an episode of pain that lasted for more than 24 hours.

Of these, 40 million have had severe pain. Such figures led the NIH to deem chronic pain “a major public health problem.”

In this context, the search for new, more effective pain management therapies is ongoing and of vital importance. Now, bioengineers from the University of California, Los Angeles (UCLA) have designed an innovative method that may succeed where other pain therapies have previously failed.

Researchers led by senior investigator Dino Di Carlo, a professor of bioengineering at UCLA, set out to investigate how magnetic force could be used to relieve pain.

The first author of the paper is Andy Kah Ping Tay, a postdoctoral researcher at Stanford University in California. The researchers published their findings in the journal Advanced Materials.

Magnetic force reduces neuronal pain signals

Tay and his colleagues designed a hydrogel using hyaluronic acid, which is a molecule uniquely capable of retaining water and that has key roles in skin moisture and skin aging. Additionally, hyaluronic acid can be found between the cells in the brain and in the spinal cord.

After creating this hyaluronic hydrogel, the scientists filled it with small magnetic particles. Then, they grew a type of brain cell — called dorsal root ganglion neurons — inside the gel.

Next, Tay and team applied magnetic force on the particles, which enabled the transmission of the magnetic field through the hydrogel and to the neural cells. By measuring the calcium ions in the neurons, the scientists were able to tell whether the cells responded to the magnetic pull — and they did.

Leave a Reply

Your email address will not be published.