Unlocking secrets of immune system proteins: A potential path to new treatments

Home / Immunology / Unlocking secrets of immune system proteins: A potential path to new treatments

Unlocking secrets of immune system proteins: A potential path to new treatments

Detailed imaging reveals intricate workings of key receptors, offering fresh insights into combating disease.

Peer-Reviewed Publication
UNIVERSITY OF SOUTHERN CALIFORNIA

Anaphylatoxin Recognition

CREDIT: JAGANNATH MAHARANA/IIT KANPUR

In the intricate dance of our body’s defenses against harmful invaders, certain immune system proteins play pivotal roles. New research from the Bridge Institute at the USC Michelson Center for Convergent Bioscience, in collaboration with international teams from India, Australia and Switzerland, has shed light on these proteins.

The work potentially paves the way for innovative treatments for a range of diseases, including severe cases of COVID-19, rheumatoid arthritis, neurodegenerative diseases and cancer.

Central to our immune response is the complement cascade, a series of events activated when potential threats are detected. This process produces protein messengers, C3a and C5a, which in turn activate specific receptors on cells, setting off a cascade of internal signals. The precise mechanisms of these receptors, especially the elusive C5aR1, have remained a mystery.

Using the advanced technique of cryo-electron microscopy (cryo-EM), the researchers captured detailed images of these receptors in action. These images unveil how the receptors interact with molecules, change shape upon activation and transmit signals within the cell.

The study’s lead author, Cornelius Gati, assistant professor of biological sciences, chemistry, and quantitative and computational biology at the USC Dornsife College of Letters, Arts and Sciences, remarked on the findings, noting, “This research offers significant and comprehensive insights into a crucial receptor family within the immune system.”

The study’s revelations suggest potential avenues for the development of drugs targeting these receptors to treat various diseases, added Gati, who heads USC’s cryo-EM facility, which is available for use by researchers around the globe.

As the global community continues to grapple with diseases that impact millions, understanding the nuances of our immune system becomes ever more critical. This research, published in the journal Cell on Oct. 17, contributes to that understanding, providing a foundation for future studies aiming to harness the power of our body’s natural defenses.

About the study

Authors on the study include Gati and Postdoctoral Fellow Ravi Yadav of USC Dornsife’s Department of Molecular and Computational Biology; Htet Khant of USC Viterbi School of Engineering; Manish Yadav, Jagannath Maharana, Shirsha Saha, Parishmita Sarma, Chahat Soni, Vinay Singh, Sayantan Saha, Manisankar Ganguly, Samanwita Mahapatra, Sudha Mishra, Ramanuj Banerjee and Arun Shukla of the Indian Institute of Technology; Xaria Li and Trent Woodruff of the University of Queensland; and Mohamed Chami of Universität Basel.

JOURNAL
Cell

DOI
10.1016/j.cell.2023.09.020

METHOD OF RESEARCH
Imaging analysis

SUBJECT OF RESEARCH
Cells

ARTICLE TITLE
Molecular basis of anaphylatoxin recognition, activation, and signaling-bias at complement receptors

ARTICLE PUBLICATION DATE
17-Oct-2023

COI STATEMENT
The authors declare that they have no competing financial interests.

Leave a Reply

Your email address will not be published.